Indian Statistical Institute Second Semester Back Paper Exam 2005-2006 B.Math. (Hons.) I Year Analysis II

Time: 3 hrs

Date: -06-06

- 1. a) Let $f : [0,1] \longrightarrow R$ be any continuous function. Show that f is Riemann integrable. [5]
 - b) Also show that

$$\int_{0}^{1} f(x)dx = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} f\left(\frac{j}{n}\right)$$
[5]

- 2. Let $f: R^2 \longrightarrow R$ have total derivative the linear map $A: R^2 \to R$ at 0 = (0, 0). Show that
 - a) $\frac{\partial f}{\partial x}(0,0), \ \frac{\partial f}{\partial y}(0,0)$ exist. [2]

b)
$$\lim_{t \to 0} \frac{f(t_{\sim}^u) - f(0)}{t}$$
 exists for any vector and is Au . [2]

c)
$$A : \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 satisfies $|Au| \leq ||A||_2 ||u||_2$ [1]

- d) Show that f is continuous at 0. $a, b \ge 0$ [2]
- 3. a) Let $0 \le c \le a + b$. Show that $\frac{c}{1+c} \le \frac{a}{1+a} + \frac{b}{1+b}$. [4] b) If (X, d) is a metric space, show that (X, m) is also a metric space where $m = \frac{d}{1+d}$ [2] c) Let X, d, m as in (b) show that $a_n \to a$ in $(X, d) \Leftrightarrow a_n \to a$ in (X, m)

[3]

- d) Show that (X, d) and (X, m) have the same family of open sets. [3]
- 4. Let $(X_1, d_1), (X_2, d_2), (X_1 \times X_2, u)$ be metric spaces where

$$u((x_1, x_2), (a_1, a_2)) = \sqrt{[d_1(x_1, a_1)]^2 + [d_2(x_2, a_2)]^2}$$

a) $\{(x_n, a_n)\}$ is Cauchy in $(X_1 \times X_2, u) \Leftrightarrow \{x_n\}$ is Cauchy in (X_1, d_1) and $\{a_n\}$ is Cauchy seq in (X_2, d_2) [3]

b) $(X_1 \times X_2, u)$ is complete $\Leftrightarrow (X_1, d_1)$ is complete and (X_2, d_2) is complete. [3]

5. Let A_1, A_2 be connected subsets of

a) (X, d) with $A_1 \cap A_2 \neq$ empty. Show that $A_1 \cup A_2$ is connected. [4] b) Show that $\{(x, y) : x^2 + y^2 = 1\} \cup [1, \infty) \times \{0\}$ of R^2 is a connected set. [3]

- 6. a) Let (X, d) be compact. Show that (X, d) has a countable dense set. [4]
 - b) Let (X, d) be compact. Show that d is bounded. [2]
- 7. Show that $[0,1] \times [0,1]$ is a compact subset of \mathbb{R}^2 . [7]
- 8. Let (X, d) be compact. Then every closed subset of (X, d) is also compact. [3]
- 9. Show that $f: (0,1) \to R$ given by $f(x) = \sin(\frac{1}{x})$ is not uniformly continuous. [2]